
Technical Aspects of Workload
Containerization

Daniel Fröhlich
DACH Solution Architect

2

3

WHY ?

4

WHY ?SPEED!

5

COST!

6

INNOVATION!

7

HOW ?

8

Open source culture powers open innovation

JUST START!

Avoid long-term roadmaps
Plan just enough to start

Break big things
Into small chunks
Work incrementally

Rapid
feedback
cycles

Automate
TDD, CI/CD

Build new skills
Through pairing
and mentoring

Experimentation
informs strategy
Small failures are
learning opportunities

9

MIGRATING WORKLOADS TO CONTAINERS

BUILD MIGRATION CASE DETERMINE FIT
AND PRIORITY PLAN MIGRATION EXECUTE MIGRATION

We help calculate and
analyze ROI based on:

We help prioritize
migrations based on:

We help plan
migration activity:

We help execute migrations
through an iterative process:

TECHNICAL:
Application scalability
Auto deployment
Infrastructure agnostic

BUSINESS:
Consolidation
Flexibility
Speed to market

PORTABILITY:
Ease of switching servers
Ease of switching cloud providers

SCALABILITY:
Ability to run multiple instances

ACTIVE DEVELOPMENT:
Ability to make changes

CHANGE CODE:
Required: fix incompatibilities
Value add: architect for cloud

AUTOMATE BUILD:
Required: S21/ Docker script
Recommended: CI/CD

CUSTOMIZE IMAGE:
Required: support development
languages and libraries
Value add: support shared libraries
and standardized configuration

1. Perform all required tasks
2. Perform all recommended tasks
3. Assess and perform “value add”
tasks individually based on need

...and emphasize continuous
improvement to drive down
incremental migration costs
over time.

1
0

EXECUTE MIGRATION BY MOVING...

1: TO RHEL 2: TO DOCKER 3: TO LOCAL OCP 4: TO TARGET OCP

Use Container Developmen
t Kit
 on your laptop

Expect Problems: with
Security

Define CI/CD Pipeline

Expect Problems with
Permissions, Operator
Limitations

Use
RHEL for Developers

(provides no-cost
subscriptions for
development use only)

Getting started with con
tainers

OpenShift Developer Gu
ide

Docker Best Practises

INVOLVE EXPERT GUIDANCE

https://developers.redhat.com/topics/containers/adoption/
https://developers.redhat.com/topics/containers/adoption/
https://developers.redhat.com/products/rhel/download/
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-containers/index.html#get_started_with_docker_formatted_container_images
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-containers/index.html#get_started_with_docker_formatted_container_images
https://docs.openshift.com/container-platform/3.6/dev_guide/index.html
https://docs.openshift.com/container-platform/3.6/dev_guide/index.html
https://developers.redhat.com/blog/2016/02/24/10-things-to-avoid-in-docker-containers/

1
1

TECHNICAL
ASPECTS

1
2

App has complex and lengthy startup
procedures

Feature(s): Init Containers

Description: Init containers provide a chained, pre-
deployment mechanism for running arbitrary
containers/programs as part of getting ready for your
application to run. They aid in application deployment
(pre-check, pre-start coordination, data population, etc)
and, to some degree, dependency management.
How it Works: Init containers run to completion and
each container must finish before the next one starts,
and will run for each pod instance. The init containers
will honor the restart policy. Leverage initContainers in
the podspec.

$ cat init-containers.yaml
apiVersion: v1
kind: Pod
metadata:
 name: init-loop
spec:
 containers:
 - name: nginx
 image: nginx
 ports:
 - containerPort: 80
 volumeMounts:
 - name: workdir
 mountPath: /usr/share/nginx/html
 initContainers:
 - name: init
 image: centos:centos7
 command:
 - /bin/bash
 - "-c"
 - "while :; do sleep 2; echo hello init container; done"
 volumes:
 - name: workdir
 emptyDir: {}

$ oc get -f init-containers.yaml
NAME READY STATUS RESTARTS AGE
nginx 0/1 Init:0/1 0 6m

https://trello.com/c/Yr7TRKHr

1
4

Apps need persistent storage

Feature(s): OCP 3.6 + CNS 3.6 (Sep 2017)

Description: CNS 3.6 (Sep 2017) with OCP 3.6 will
support block, higher volume density & S3 object
store

How it Works:
● RWO volumes backed by Gluster-iSCSI

block storage provide better performance for MySQL,
PostgreSQL, etc. and targeting support for Elastic
Search (OCP Logging)

● 3x volume density per cluster (1000+) with lower
memory footprint of RHGS (Brick-mux)

● S3 object service for OCP (based on swift-on-file,
Tech Preview)

OPENSHIFT NODE 2 OPENSHIFT NODE 3

OPENSHIFT NODE 1

RHGS Container RHGS Container

MASTER

APP Container APP Container

APP CONTAINER

OPENSHIFT NODE 4

RHGS Container

APP Container

LOOPBACK FILE

ISCI TGTD

ISCSI LUN WITH XFS

https://trello.com/c/7ERBL8RS/14-proper-support-for-non-shared-persistent-storage-access-rwo

1
6

Security Team is missing
firewall between app server

and database

Feature(s): Network Policy

Description: Optional plugin specification of how selections of
pods are allowed to communicate with each other and other
network endpoints.

How it Works: Fine-grained network namespace isolation
using labels and port specifications

● what ingress traffic is allowed to any pod, from any other pod

● on specific ports

● including traffic from pods located in other projects

Additional Enhancements for 3.6:
● Make services work with NetworkPolicy

● Implement NetworkPolicy support with PodSelectors (v1)

● Implement NetworkPolicy support for specific ports

● Implement NetworkPolicy watching/parsing, handle simple policies

Tech
Previe

w

kind: NetworkPolicy
apiVersion: extensions/v1beta1
metadata:
 name: allow-to-red
spec:
 podSelector:
 matchLabels:
 type: red
 ingress:
 - {}

Policy applied to namespace: project-a

https://trello.com/c/p9rMmf4K/305-epic-implement-upstream-networkpolicy-policy
https://trello.com/c/HgnSl5nn/320-5-make-services-work-with-networkpolicy-sdnpolicy
https://trello.com/c/XUeFoeYq/384-5-implement-networkpolicy-support-with-podselectors-v1-sdnpolicy
https://trello.com/c/U5I9wnWH/383-3-implement-networkpolicy-support-for-specific-ports-sdnpolicy
https://trello.com/c/ipmDwyB1/314-8-implement-networkpolicy-watching-parsing-handle-simple-policies-sdnpolicy

Feature(s): Network Policy (tech preview)

Description: Plugin (optional) specification of how
selections of pods are allowed to communicate
with each other and other network endpoints.

How it Works: Namespace isolation at the
network layer using defined labels. Can also limit
connections to specific ports (e.g. only TCP ports
80 and 443).

Networking
kind: NetworkPolicy
apiVersion: extensions/v1beta1
metadata:
 name: allow-from-red
spec:
 podSelector:
 ingress:
 - from:
 - podSelector:
 matchLabels:
 type: red

kind: NetworkPolicy
apiVersion: extensions/v1beta1
metadata:
 name: allow-to-red
spec:
 podSelector:
 matchLabels:
 type: red
 ingress:
 - {}

kind: NetworkPolicy
apiVersion: extensions/v1beta1
metadata:
 name: allow-from-red-to-blue
spec:
 podSelector:
 matchLabels:
 type: blue
 ingress:
 - from:
 - podSelector:
 matchLabels:
 type: red

kind: NetworkPolicy
apiVersion: extensions/v1beta1
metadata:
 name: allow-http-and-https
spec:
podSelector:
ingress:
- ports:
 - protocol: TCP
 - port: 80
 - port: 443

NOTE: Designed to
provide an early look for
testing/development.
Not all features will be
available.

https://trello.com/c/p9rMmf4K/305-epic-implement-upstream-networkpolicy-policy

1
9

App needs ultra fast
communication between

components by using shared
memory

Feature(s):
Shared Memory for Containers within the s
ame pod

Description: When you decide to run more
than 1 container in the same pod, it is likely
that you would want them to be able to share
memory segments. We now allow it in the
default configuration.
How it Works: /dev/shm is shared across

containers in a pod and is limited to 64mb and
charged under the memcg cgroup.

$ kubectl create -f shared-memory.yaml
$ kubectl exec -it hello-openshift -c nginx /bin/bash
echo "Hi" > /dev/shm/hi
$ kubectl exec -it hello-openshift -c mongo
/bin/bash
cat /dev/shm/hi
Hi

https://trello.com/c/ZooYdlls
https://trello.com/c/ZooYdlls

2
1

App does not scale
horizontally and needs

active/passive hot standbys
for high availability

Feature(s): StatefulSets

Description: This new controller allows for the
deployment of applications types that require
changes to their configuration or deployment
count (instances) to be done in a specific and
ordered manner.

Tech Preview

How it Works: StatefulSet offer more control
over scale, network naming, handling of PVs,
and deployment sequencing. They are in beta
upstream in kube and therefore have reached
tech preview in OCP 3.5. They will likely not
come out of tech preview until OCP 3.8 or 3.9.

Supported:
1. Declaration of Ordinal Index
2. Stable Network ID nomenclature
3. Controlled/manual handling of PVs
4. Sequence Control at deployment time
5. Ordered control during scale up/down based

on instance status

Not Supported:
6. Slow to iterate through the Ordinal Index and

therefore slow on scale up/down
7. No deployment/pod spec post deployment

verification of what is deployed Vs what is
configured in the json.

8. Locality awareness of zones/regions when
dealing with scale up/down ordinality changes
or mounted PVs.

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

2
3

App DOES scale horizontally,
but needs multicast traffic

sync running instances

Feature(s): Multicast Support

Description: Multicast support so pods can
send/receive traffic with other pods subscribed
to the same multicast group.

How it Works:
requires ovs-multitenant plugin (or the new Network Policy plugin)
only annotated namespaces:

netnamespace.network.openshift.io/multicast-enabled: "true"

pods in different tenants can subscribe to same multicast group but can’t see each others traffic
admin tenant (default project) multicast traffic does not appear in other projects
overlay (ovs+ tenants) and underlay (vm, physical server) multicast traffic never mix
Caveat:
Best for low bandwidth coordination or service discovery -- not a high-bandwidth solution.

https://trello.com/c/zL38DKU8

2
5

App requires GPU support
(image rendering, tensor flow)

GPU Decision Points

Should the kubelet be the function to load
device drivers and kernel modules needed by
the hardware or should the container
runtime?

Should we use scheduler extensions to multi-schedulers to run
an additional scheduler that processes the attributes coming
from the custom isolator?

https://blog.openshift.com/use-gpus-openshift-
kubernetes/

2
7

App requires Windows DLL

Windows Containers on OpenShift
(Preview)

● Upstream project to improve Windows
Containers and Kubernetes support

● Collaboration between Microsoft, Red
Hat and Kubernetes (Windows SIG)

● Demo of OpenShift running mixed
cluster with Windows
Containers/Windows Server 2016 Nodes
running with Linux Containers/RHEL
Nodes

● Running in OpenShift (kube pod)
running .NET 4.5. With a java container
as well.

● Watch the demo video.

https://www.youtube.com/watch?v=ot6Ey1DdpRQ&t=2329s

3
0

CONTAINERIZATION IN PRACTICE

» Conduct high-level analysis

» Address major dependencies

» Define networking behavior

» Stand up application level control

» Define startup and runtime resourcing

CLOUD NATIVE APPLICATION IDEALS

3
1

Cloud native applications have some
distinctive architectural characteristics
and are designed to leverage cloud environments.

• Ability to handle dynamic scaling, load configuration

 in flexible ways, and aggregate logs

• Dynamic discovery of dependencies

• Load balancing of requests to dependencies

• Enable application monitoring and distributed tracing

• Circuit breaker and bulkhead patterns

• Feature toggles and health checks

3
2

BEFORE GOING CLOUD NATIVE,
START WITH CLOUD COMPATIBLE

We start with some simple application changes:

• Create support for external configurations

• Remove IP bindings

• Run on Red Hat® Enterprise Linux 6.4+

 compatible libraries

• Ensure logs write to console/stdout

3
3

JOURNEY FROM CLOUD COMPATIBLE
TO CLOUD NATIVE

Cloud compatible represents the minimum viable
product required to onboard to container-based cloud
platforms.

Progress can be made along the continuum towards
cloud native with subsequent iterations.

Actual end state should be dictated by the needs of the
business. Not every application needs to be fully cloud
native in order to provide value!

	Technical Aspects of Workload Containerization
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	JUST START!
	MIGRATING WORKLOADS TO CONTAINERS
	EXECUTE MIGRATION BY MOVING...
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Networking
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	GPU Decision Points
	Slide 27
	Windows Containers on OpenShift (Preview)
	Slide 29
	CONTAINERIZATION IN PRACTICE
	CLOUD NATIVE APPLICATION IDEALS
	BEFORE GOING CLOUD NATIVE, START WITH CLOUD COMPATIBLE
	JOURNEY FROM CLOUD COMPATIBLE TO CLOUD NATIVE

